Topic 1: Solve Problems Involving Real Numbers

Term	Meaning	Example
Real Number		
Rational Number		
Irrational		
Number		
Square Root		
Perfect Square		
Cube Root		

Lesson 1: Understand Irrational Numbers

What is an integer?

Integers are (fill in the blanks from the video): \qquad and
\qquad whole numbers. This also includes \qquad ـ.

Examples of Integers are (write every example and any work shown in the video):

What is a rational number?

A rational number is a number (fill in the blanks from the video): These are created by \qquad

2 integers (denominator cannot be \qquad). Rational numbers CAN be \qquad or
\qquad They can also be a \qquad or a \qquad including
\qquad decimals. Rational numbers CANNOT be decimals that NEVER
\qquad yet never end. This is EXTRA: They can terminate, meaning that the decimal has an end.

Examples of rational numbers (write every example and any work in the video):

What is an irrational number?

Irrational numbers are (fill in the blanks from the video): Positive or negative \qquad ,
\qquad or \qquad that go on forever and do NOT \qquad _.

Examples of irrational numbers (write every example and any work in the video):

Lesson 3 Day 1: Evaluate Square Roots and Cube Roots

Goal: Evaluate square roots and cube roots to solve problems

 Evaluate perfect squares and perfect cubesThis is an example of an exponent.

The base is the number that is repeatedly multiplied to itself, the number of times that is the exponent number. In this example it would be: $7 \times 7 \times 7$. Notice the base, 7 , is repeatedly multiplied to itself 3 times, because the exponent is 3 .
These expressions with exponents are given below. For each expression, label the base and the exponent. Then, explain the mathematical meaning by writing it in exponent form.

5^{3}	m^{5}	100^{2}
Expanded:	Expanded:	Expanded:

Similar to the inverse operations of addition and subtraction, raising a base to an exponent also has an inverse operation. Use the table below to explore one example.

Squares and Square Roots	*Squaring a number is raising that number to a power of \qquad or multiplying a number by itself. *The square root is an \qquad operation of squaring a number and "undoes" an exponent of 2. "The \qquad square root is known as the principal square root.	The square root of x : "What number times itself will give me x ?

In 1-4, use squares and square roots to evaluate the given expression.

5. Three equations are given below. Use inverse operations to isolate the variable. Be sure to check your solution by plugging it back into the original equation.

a. $x^{2}=81$	b. $m^{2}=9$	c. $f^{2}=400$

Lesson 2: Plot, Compare, and Order Real Numbers

Goals: Approximate square roots by using perfect squares Compare and order rational numbers

Steps for ordering real numbers:

1. Turn all real numbers into its decimal form
2. Approximate the decimal to 2 decimal places
3. Place number on number line

Reasoning The "leech" is a technical term for the slanted edge of a sail. Is the length of the leech shown closer to 5 meters or 6 meters? Explain.

Lesson 3 Day 2: Evaluate Square Roots and Cube Roots

Goal: Evaluate square roots and cube roots to solve problems Evaluate perfect squares and perfect cubes

Cubes and Cube Roots	*Cubing a number is raising that number to a power of \qquad , or multiplying that number to itself three times. *The cube root is an \qquad operation of cubing a number and "undoes" an exponent of 3 .	Words: The cube room of x. What number is multiplied to itself 3 times will give me x ?

Complete the table as a reference of the first ten perfect cubes.

1^{3}	2^{3}	3^{3}	4^{3}	5^{3}	6^{3}	7^{3}	8^{3}	9^{3}	10^{3}

In, \#6-9, use cubes and cube roots to evaluate the given expression.

$\sqrt[3]{512}$	$(-5)^{3}$	$\sqrt[3]{216}$	$(1 / 4)^{3}$

10. Three equations are given below. Use inverse operations to isolate the variable. Be sure to check your solution by plugging it back into the original equation.

a. $p^{3}=64$	b. $n^{3}=1,000$	c. $g^{3}=125$

Lesson 4: Solve Equations Using Square Roots \& Cube Roots

Goal: Solve equations in real world contexts, involving square roots and cube roots.
Use your knowledge of square roots and cube roots to solve the following real world problems.
11. Trisha's Treats, a local bakery, has a square menu on the wall with a square area of $900 \mathrm{in}^{2}$.
a. Write an equation that could find s, the side length of the sign.
b. What is the side length of the sign?
12. The volume of a cube is shown below.
a. Write an equation that could be used to find, x, one side length of the cube.
b. Solve for x.

Do negative answers make sense in these real-life contexts?
Why or why not? \qquad
\qquad
\qquad

When solving an equation, your goal is to \qquad the variable by performing the \qquad .

$64=c^{2}$
$x^{2}=225$

$$
v^{3}=64
$$

$n^{2}=34$
$w^{3}=244$
$\mathrm{m}^{2}=45$
$\mathrm{n}^{2}=\mathrm{x}$
$p^{3}=k$

Remember that each number has \qquad square roots \qquad \& \qquad

