Topic 1: Solve Problems Involving Real Numbers

Term	Meaning	Example
Real Number		
Rational Number		
Irrational Number		
Square Root		
Perfect Square		
Perfect Cube		
Cube Root		

Lesson 1: Understand Irrational Numbers

What is an integer?

Integers are (fill in the blanks from the vide	20):	and	
whole numbers. This	s also includes		
Examples of Integers are (write every exam	ple and any work shown	in the video):	
<u>What is a rational number?</u>			
A rational number is a number (fill in the blan	nks from the video): T	hese are created b	ру
2 integers (denominator cannot be). I	Rational numbers CAN	be	or
They can also be a	or a		including
decimals. Ra	tional numbers CANNO	T be decimals that	t NEVER
, yet never end. This is EXTRA	A: They can terminate,	meaning that the	decimal has an end.

Examples of rational numbers (write every example and any work in the video):

What is an irrational number?

Irrational numbers are (fill in the blanks from the video): Positive or negative _____,

_____ that go on forever and do NOT ______.

Examples of irrational numbers (write every example and any work in the video):

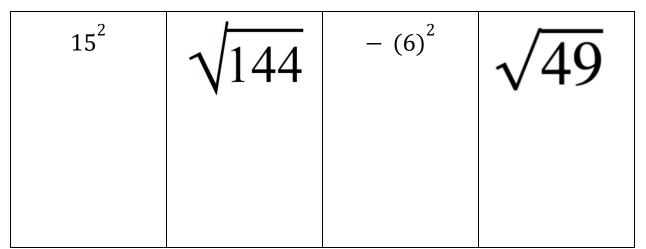
Lesson 3 Day 1: Evaluate Square Roots and Cube Roots

Goal: Evaluate **square roots** and **cube roots** to solve problems Evaluate **perfect squares** and **perfect cubes**

This is an example of an exponent.

Base
$$\rightarrow 7^{3}$$
 Exponent

The base is the number that is repeatedly multiplied to itself, the number of times that is the exponent number. In this example it would be: 7 x 7 x 7. Notice the base, 7, is repeatedly multiplied to itself 3 times, because the exponent is 3.

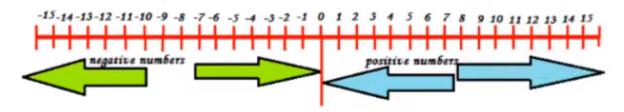

These expressions with exponents are given below. For each expression, label the base and the exponent. Then, explain the mathematical meaning by writing it in exponent form.

m^5	100 ²
Expanded:	Expanded:
	m

Similar to the inverse operations of addition and subtraction, raising a base to an exponent also has an inverse operation. Use the table below to explore one example.

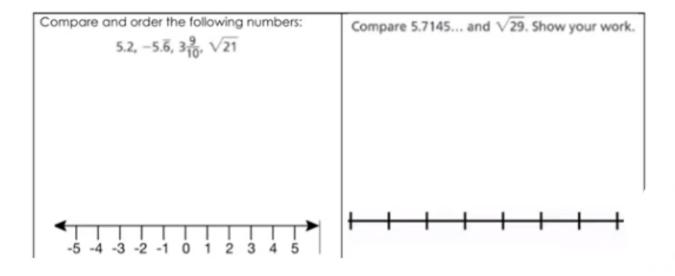
Squares and	*Squaring a number is raising that number to a power of or multiplying a number	The square root of x:
Square Roots	by itself. *The square root is an operation of squaring a number and	\sqrt{x}
	"undoes" an exponent of 2. *The square root is	"What number times itself will give me x?
	known as the principal square root.	

In 1-4, use squares and square roots to evaluate the given expression.



5. Three equations are given below. Use inverse operations to isolate the variable. Be sure to check your solution by plugging it back into the original equation.

a . x ² = 81	b . $m^2 = 9$	c. $f^2 = 400$


Lesson 2: Plot, Compare, and Order Real Numbers

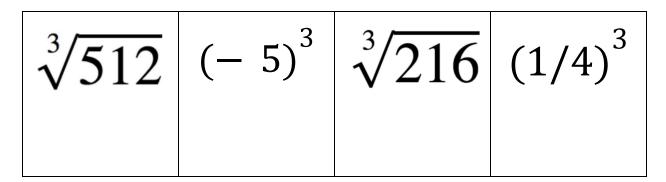
Goals: Approximate **square roots** by using **perfect squares** Compare and order **rational numbers**

Steps for ordering real numbers:

- 1. Turn all real numbers into its decimal form
- 2. Approximate the decimal to 2 decimal places
- 3. Place number on number line

Reasoning The "leech" is a technical term for the slanted edge of a sail. Is the length of the leech shown closer to 5 meters or 6 meters? Explain.

Lesson 3 Day 2: Evaluate Square Roots and Cube Roots


Goal: Evaluate **square roots** and **cube roots** to solve problems Evaluate **perfect squares** and **perfect cubes**

and	*Cubing a number is raising that number to a power of	Words: The cube room of x.
Cube Roots	, or multiplying that number to itself three times. *The cube root is an operation of	$\sqrt[3]{x}$
	cubing a number and "undoes" an exponent of 3.	What number is multiplied to itself 3 times will give me x?

Complete the table as a reference of the first ten perfect cubes.

1^{3}	2 ³	3 ³	4^3	5^3	6^3	7 ³	8 ³	9 ³	10 ³

In, #6-9, use cubes and cube roots to evaluate the given expression.

10. Three equations are given below. Use inverse operations to isolate the variable. Be sure to check your solution by plugging it back into the original equation.

a. <i>p</i> ³ = 64	b. n ³ = 1,000	c. $g^3 = 125$

Lesson 4: Solve Equations Using Square Roots & Cube Roots

Goal: Solve equations in real world contexts, involving square roots and cube roots.

Use your knowledge of square roots and cube roots to solve the following real world problems.

11. Trisha's Treats, a local bakery, has a square menu on the wall with a square area of 900 in^2 .	12. The volume of a cube is shown below.
a. Write an equation that could find s, the side length of the sign.	a. Write an equation that could be used to find, x, one side length of the cube.
b. What is the side length of the sign?	b. Solve for x.
	$V = 729 in^{3}$

Do negative answers make sense in these real-life contexts?

Why or why not? _____

 When solving an equation, your goal is to ______ the variable by performing

 the _______.

 <------>

 <------>

 <------>

 <------>

 <------>

 <------>

 <------>

 <------>

 $64 = c^2$ $x^2 = 225$ $v^3 = 64$

n ² = 34	w ³ = 244	m ² = 45

$n^2 = x$ p	³ = k
-------------	------------------

Remember that each number has _____ square roots (_____ & ____)